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Abstract. Muon spin relaxation in metals with trapping being taken into account is 
considered. It is shown that, owing to the motional narrowing, the spin relaxation of free 
(untrapped) muonsin crystalsis almostundetectable. Themaincontribution to therelaxation 
is from the trapped muons. In the case when the characteristic relaxation time of the muon 
space distribution is much less than its spin relaxation time, the fraction of trapped muons 
as well as the temperature dependence of the spin relaxation rate are found on the base of 
the ergodic assumption. In the opposite case the spin relaxation observed is defined by the 
characteristic time of the slowest process of space distribution relaxation. The experimental 
data on Bi, Cu and AI are interpreted within the consideration developed. 

1. Introduction 

Muon spin resonance ( ~ U S R )  is the effective tool for investigation of magnetic fields in 
crystals and their time dependences. The use of the ~ S R  method demands information 
on the muon conditions: whether the muon is trapped or tunnels from one interstice to 
another. A number of experimental and theoretical articles relevant to ~ S R  in metals 
(see, e.g., Cox 1987) have been published but a consistent theoretical description of 
experimental results has not yet appeared. One of the main questions with respect to 
such a description is about the value of the muon spin relaxation rate at low temperatures. 
If a positive muon tunnels coherently from one interstitial site to another, then the 
suppression of relaxation due to the motion is so strong that the experimental observation 
of the relaxation seems to be impossible. The situation is different in reality and, to 
make the theory agree with experiment, one has to assume that the value of the tunnelling 
matrix element is some powers less than that obtained in the theory (Welter et a1 1983). 
At the same time, if one assumes that muons are trapped at low temperature, it becomes 
unclear whether the concentration is independent of the relaxation rate over a wide 
temperature interval (Barsov et al1983). 

In the present paper this discrepancy is explained and eliminated. We shall show that 
at low temperatures the muons are trapped by point defects and the concentration 
independence of the relaxation rate is due to a logarithmic dependence of the muon- 
trapping characteristic temperature on the concentration of point defects. 

We begin by obtaining the relaxation rate of muons in the case of band motion and 
then trapping is taken into account. In the last part of the paper the theoretical results 
are compared with the experimental results. 
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2. Muon spin relaxation in the case of band motion 

In pure crystals at low temperatures the muon is described by a Bloch wavefunction; so 
the spin relaxation time is the characteristic time of scattering with a spin upset due to 
the dipole-dipole interaction between magnetic moments of the muon and the host 
nuclei. A similar description for electrons in semiconductors has been given by Abra- 
hams (1957). For non-correlated nuclei spins the relaxation time of the muon spin is 

Here k and k' are the initial and final quasi-momenta of the muon, Q is the elementary- 
cell volume, E(k) is the dispersion of muons, and Vlp, -1/2(k - k') is the amplitude of the 
muon scattering with spin upset. 

If the muon's temperature Tis higher than their band width eo,  the magnitude of the 
characteristic quasi-momentum is of the order of the Brillouin momentum kB and we 
obtain the estimation 

z,' = U$h/E0 (2) 

where uo is the relaxation rate in the absence of muon diffusion. Equation (2) does not 
differ from the estimation obtained from classical considerations, when one assumes the 
muon to be a classical particle hopping between the interstices with a frequency .z0/h 
(Welter et a1 1983). The temperature dependence of t, in this interval is governed by 
that of connected with infrared renormalisation (Kondo 1984): 

E o  = &oo[max(T, &oo)/DIK (3) 

where E~ = constant, D is the conduction electron band width, and the index K - 
N2(0)U: ,  N(0)  being the conduction electron density of states at the Fermi surface, and 
U1 is the electron-muon scattering amplitude. Thus, we can write 

For the case T + c0 the characteristic muon thermal momentum k equals kB( T / E ~ ) ' / *  
and one obtains from equation (1) 

T i '  (U$h/&o)( T/Eo) 1'2. ( 5 )  

Assuming a definite time dependence of the dipole field correlation function, Kondo 
(1986) predicted exactly the same temperature dependence. Such a result differs from 
the classical dependence even qualitatively. 

= 10-'-1 meV the quantity t, 
is several orders greater than the observation time; so muon spin relaxation at low 
temperatures must be unobservable. 

Of course, band motion takes place only when the muon free path length considerably 
exceeds the inter-atomic distance a. For the opposite limiting case a correct calculation 
of the rate of muon hopping between neighbouring interstices has not been carried out 
up to now (Morosov and Sigov 1989). It is very likely, however, that the time z, in this 
range is also much longer than the observation time. At high temperatures the main 
contribution to diffusion is from the classical over-barrier hopping. 

For the characteristic values uo = 105-106 s-l and 
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3. Muon spin relaxation in the case of trapping 

The foregoing considerations demonstrate that muon trapping is the cause of the muon 
spin relaxation observed in experiments. We have shown (Morosov and Sigor 1989) that 
any point defect is a trap for a muon in metals. In fact, a point defect interacts indirectly 
with muons through acoustic phonons (elastic interaction) and through conductivity 
electrons. The long-range part of the latter interaction is caused by the defect-induced 
Friedel oscillations in the electron density. The resulting long-range part of the muon- 
defect interaction at a distance R has the form 
W ( R )  = Q{W(n) + [N(O)U, (2kF)v2(2kF)/2n~2(2k,)1 cos(2k$)}/R3 (6) 
where n = R / R ,  U 2  is the amplitude of the electron scattering from a defect, kF is the 
Fermi momentum of electrons and .Z (2kF) is the dielectric constant. 

The first term in equation (6), which allows for the elastic interaction, may be either 
positive or negative, depending on the orientation of the vector n with respect to the 
crystallographic axes, One can easily see that owing to the changing sign of W(n)  and 
cos(2kFR) there exist a number of interstices with W ( R )  < 0 ,  the interstice with the 
lowest energy W O  at kFa  = 1 corresponding to R = a. So, many bonded states with 
significantly different W ( R )  are created for a muon in the metal by any point defect. 

Let us accept a standard assumption that as a result of thermalisation a muon in a 
metal occupies any interstice with equal probability. That is why its distribution function 
is essentially non-equilibrium (in the opposite case the probability of occupation of the 
interstice with W(R) < 0 should be greater). 

By analogy to pions (Fabritius et a1 1986) the characteristic relaxation time of the 
muon space distribution to can be found from the equation 

where K denotes the fraction of trapped muons, and tl and t2  are the characteristic 
trapping and escape times, respectively. The solution of equation (7a) is 

dK/dt = ( l / t l ) (  1 - K) - (1/t2)K ( i a )  

K ( f )  = Z 2 / ( t l  Z2) 4- [ K ( O )  - r2/(t1 +r2)1 exp(-t/to) 

to = t 1 t 2 / ( t l  + 72). 

(7b) 

(8) 

where 

For simplicity we assume the presence of traps of one type only. 

and, following Kagan and Prokof'ev (1986), one can write 
In the case of metals the escape process is caused by the muon-electron interaction 

(9) 
The correlation between to and t, plays the main part in the muon spin relaxation 

processes. If to z, the relaxation may be investigated using the equilibrium space 
distribution of muons. Obviously, at equilibrium of the muon ensemble, because of 
ergodicity the fraction of trapped muons is given by K = t2/(t1 + z2) and equals the 
fraction of time spent by a muon in the trapped state. 

Because of the presence of bonded states there exists a characteristic temperature 
TO of trapping. Within the framework of the elementary statistical theory (Morosov and 
Sigov 1989) one finds that 

r;' = to' exp(-/Wol/T) = N 2 ( 0 ) U : ( ~ ~ / h / W O l ) e x p ( - / w 0 / / ~ ) .  

To = Wo/lnx (10) 
where x is the concentration of traps. At  T %- To the fraction of trapped muons (muons 
in bonded states with the energy W(R) < - T )  is small and almost all muons are free. At  
T To, almost all muons are trapped (K = 1). The value of K changes in the temperature 
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interval To/l1nxl near To: 

(Morosov and Sigov 1989). In the case of trapping, one can introduce the relaxation rate 
in the form 

where t,,, and zs,f are the muon spin relaxation times for trapped and free states, 
respectively. It should be noted that the result (12) can be obtained from the system 
described by Borghini et a1 (1978) by the use of some additional conditions between z1 
and t 2 .  As became clear in 9 2, the second term in equation (12) is negligible. It is widely 
known that 

K = 1 - [I + y x ( ~ / W , ) ~  exp(IWo//T)]-' y - 1  (11) 

t;' = K t , :  + (1 - K ) t , f  (12) 

where a, is the muon spin relaxation rate in the trap. 
For the characteristic values of a, and zo, one has a,zo G 1. So, even for the trapped 

muons at high temperatures, we cannot observe any relaxation. The temperature T ,  
corresponding to the increase in the relaxation rate can be estimated from the condition 
a,z, f 1: 

TI = Wo/ln(a,zo). (14) 
In the case To > T1 ( x  > a,zo), all muons are trapped at T I  and one should observe 

the temperature dependence of z;' (figure 1, full curve) which does not depend on x .  
We assume here the trap microstructure to be independent of temperature but possible 
violation of such an assumption will be shown further. 

We should like to stress that the exponential drop of z;' at T I  with increasing 
temperature is caused by the exponential dependence of the escape time and not by the 
incoherent tunnelling in an ideal crystal assumed by many workers. 

In the case To < T 1  (for small trap concentrations) and for T < T1 ,  one arrives at the 
condition atzZ %- 1. If to Gz,, then equation (12) for the relaxation rate can be used: 

Within the temperature interval where z2 G tl, it yields z;' cc x ,  because at and z2  are 
independent of the concentrationx, and z;' x. The value of z, decreases with decreas- 
ing temperature and approaches to; therefore the space distribution of muons becomes 
of a non-equilibrium nature. The regime changes at the characteristic temperature T2 ,  
when 

t;' = arz2/(z1 + t 2 ) .  (15) 

K - 2 (  T2) = 0, 'Cl( T z ) .  (16) 
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At T < T2 the space relaxation is much slower than the spin relaxation and the 
observable value of t, is defined by the characteristic time of the slowest process. 
Consequently, one has 

and t, is independent of the dipole field. 
t;' = to1 = z;' + t;' (17) 

One can see that in this interval the ~ S R  lineshape is of the Lorentz form. 
At T = T2 the increase in t i '  with decreasing temperature is changed for a decrease 

due to a fast exponential increase in t2. At T = T2 the value of t;' reaches its maximum 
with the height 

= K - l t ; '  = (a,/t,)"2 x1/2 (18) 
and T2 (In x)-'with logarithmicaccuracy. At lower temperatures we have t2 9 tl and 
t, = t,. The consequent increase in ti1 is caused by the decrease in t1 with decreasing 
temperature. If the product a,t, appears to be less than unity, we can again evaluate 
tS-' from equation (12); t;' = at is constant. The characteristic temperature depen- 
dence of t;' at T l  > To is reflected by the broken curve in figure 1. 

Now let us consider the case when there are several kinds of trap; this is more close 
to the real situation in crystals. In this case we have side by side with l o  a number of 
characteristic times t, describing the establishment of an equi1ibriu.m distribution of 
muons between traps of different types. For an example of the traps of two types ( j  = 
1 ,2 )  we can write by analogy to equation (7): 

dK,/dt = tjj'(1 - K, - K ~ )  -  til^, (19) 
where K] is the fraction of muons trapped by traps of thejth type. For the limit t2, 4 tll 
the time t ,  is 

It can easily be seen that the value of tl increases exponentially with decreasing 
temperatures as min(tZj). So at low temperatures the distribution of muons between 
traps is of a non-equilibrium nature. At high temperatures a muon during the observation 
has time to be trapped by centres of all types and spends most time at the deepest level. 
However, at low temperatures a muon being trapped stays in the given state during the 
whole observation time (the probability of escape is negligibly small). The depth of a 
trap is of no importance and the product ~~t~~ does not depend on j .  The values of atj for 
different traps are not equal; therefore the value of t;' must alter at a temperature 
T <  Ti. 

4. Comparison with experimental data 

4.1. Muons in bismuth 

The diffusion of positive muons in bismuth has been investigated by Barsov et a1 (1983) 
and Gygax etal (1988). The temperature dependence of t;' (Barsov etal 1983) is shown 
in figure 2. The absence of concentration dependence of t;' shows that T1 < To. In fact, 
using the experimental data a, = 2 X lo5 s-l and to = 7 X lo-'* s (Gygax et al1988), we 
obtain atto = 1.4 X i.e. much less than the impurity concentration in the sample. 
The presence of the plateau in the range 130 K < T < 175 K (Gygax et all988) may be 
explained by the influence of traps of another type with a much larger concentration and 
a larger value of to but a smaller value of JWol. 
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Figure 2. Experimental temperature 
dependence of t;' in Bi: 0, x = 
0,  superpure sample. 

The temperature dependence of t;' at T < 100 K is caused by a change in the trap 
structure and in the bonded muon state. It was shown in § 2 that each defect gives rise 
to a number of interstices with W(R)  < 0. However, at low temperatures the probability 
of occupation of the interstice with minimum energy is overwhelming and ut is deter- 
mined by the dipole field at the interstice. 

Within the ranges T < 10 K and 80 K < T < 130 K, muons occupy the interstices 
with different symmetries (Gygax et a1 1988). Thus we can deduce that at T < 10 K the 
muon in the interstice of type 1 near the point defect has a minimum energy. Then, 
during heating, because of the difference in the temperature corrections to the muon 
energy for interstices of different types, the energy of the muon in the interstice of type 
2 at first decreases to that of type 1 and subsequently becomes even less. Now the 
probability of muon occupation of interstices of type 2 near the defect is dominant. 

If the energy difference A E  between the interstices of types 1 and 2 is less than T ,  
one deals with a two-level system with a comparable probability that these interstices 
are occupied. In such a case the relaxation rate decreases because of averaging of the 
dipole field (Gygax et a1 1988). For a real system the number of equivalent sites may be 
greater than two and one has to find it by examining a specific trapping centre. The 
nature of traps in bismuth is unknown, however. In our opinion the decrease in the 
relaxation rate and the formation of the plateau at 20 K < T < 60 K occur because of 
such extended states. 

4.2. Muons in copper 
The temperature dependence of the relaxation rate in the case of copper (Gurevich et 
a1 1972) is fairly well described by the full curve in figure 1. We did not succeed in finding 
any data on the concentration dependence of z;' for copper. 

Assuming that T I  < To and using experimental values T I  = 100 K, ot = 2.2 X 
lo5 s-', WO = -540 K (Gurevich et a1 1972), we find that to = 2 x lO-'s. Such a result 
demonstrates that To < T I  forx < 4 X Substituting the value of to in equation (9), 
we can estimate E~ to be 1-3 Ka t  T = 100 K. (It should be noted that in semi-metals such 
as bismuth the main contribution to t;' may be from multi-phonon processes; that is 
why the value of eo in bismuth was not estimated.) 
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The deviation of t;' from the constant value at T < 5 K (Welter et a1 1983) may be 
connected with the non-equilibrium distribution of muons between traps of different 
types in this temperature range. This idea is confirmed by the absence of such a deviation 
in copper with a large concentration of iron. 

4.3. Muons in aluminium 
The muon spin relaxation in aluminium has been examined by Kehr et a1 (1982) who 
observed the dependence of t;' on the concentration of manganese impurities (figure 
3). This provided evidence for the inequality To < TI in the range of small x-values. 

The theory developed in the present paper allows us to explain the nature of the 
impurity peak in z;' at T = 20 K and its evolution with increasing manganese con- 
centration. One has To > TI forx = 1300 ppm, but To < T I  for x = 57 ppm. Comparing 
the values of ( z ; ' ) ~ ~ ~  for x = 57 ppm and t;' for x = 1300 ppm at low temperatures, 
we find the values K = 0.7, t1 = 10 ps and t2 = 15 ps at T = TZ. Using the known values 
of x and T2 = 20 K, we obtain from equation (11) that W O  = -240 K. 

For single-crystal samples the value of t;' at T+ 0 tends to unity and remains the 
same limit when the concentration of manganese differs by as much as 23 times; so we 
deduce that a,t, < 1 at T-. 0. 

The situation changes for polycrystalline samples, and the reason for this may be 
either the strong muon scattering from the grain boundaries or the muon trapping at the 
boundaries, i.e. the competition between two types of trap (grain boundaries and 
manganese atoms), the value of a, for the grain boundaries being smaller. 

5.  Conclusions 

(i) The spin relaxation of free muons in crystals is unobservable owing to the effect 

(ii) The muon spin relaxation may be detected only if muons are trapped. 
(iii) In the case t, >> to,  one can find the temperature dependence of t, on the basis 

of the ergodicity assumption. 
(iv) The exponential drop in t;' at T I  with increasing temperature is caused by the 

exponential dependence of the escape time and not by the incoherent tunnelling in an 
ideal crystal. 

(v) If the relaxation of the space distribution of muons is much slower than their spin 
relaxation, then the observed value of t, equals to. 

of motional narrowing. 
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(vi) The presence of traps of different types may lead to a temperature dependence 
of z, in the range T < T I .  

It is meaningful to investigate the temperature dependence of the relaxation rate in 
single-crystal samples with impurities of a known type whose concentration may be 
varied in a wide range. Increasing the concentration, we observe a crossover from the 
regime To < T I  (when a concentration dependence of t;' does exist) to the regime 
To > T ,  (when the value of z;' does not depend on the concentration). This type of 
investigation may allow us to verify experimentally the result given by equation (10) and 
to estimate the muon band width (the magnitude of the tunnelling matrix elements) 
in the metal using the obtained value of zo. 

Thus it can be seen that we have managed to propose an approach which allows us 
to describe the main features of muon spin relaxation at low temperatures. 
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